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Abstract

The compact form of the discontinuous Galerkin
method allows for a detailed local analysis of the
method in the neighborhood of the shock for a non-
linear model problem. Insight gained from the anal-
ysis leads to new 
ux formulas that are stable and
that preserve the compactness of the method. Al-
though developed for a model equation, the 
ux
formulas are applicable to systems such as the Eu-
ler equations. This article presents the analysis for
methods with a degree up to 5. The analysis is ac-
companied by supporting numerical experiments us-
ing Burgers' equation and the Euler equations.

Introduction

The discontinuous Galerkin method is being de-
veloped as a means for obtaining a high-order shock
capturing-capability on unstructured meshes. This
capability is an important step toward achieving an
e�cient and robust method for aeroacoustic appli-
cations. The objective of this work is to determine
whether a local eigenvalue analysis can predict the
instabilities that have been previously observed, and
to use insight gained from the analysis to suggests
ways to eliminate the instability.
In reference 1, the discontinuous Galerkin method

was formulated in a quadrature-free form that re-
duced both the computational e�ort and storage re-
quirements. Reference 2 described the implemen-
tation of boundary conditions, including the treat-
ment of curved walls and nonre
ecting boundary
conditions. In these works, the method was de-
scribed in detail, and numerical results for scalar
advection and for the Euler equations were shown
to demonstrate the accuracy and robustness of the
method. These studies showed numerically1 that
piecewise linear and piecewise quadratic discontinu-
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ous Galerkin methods were stable without the use of
either limiters or added dissipation when applied to
the nonlinear Burgers' equation for a shocked case.
However, higher order methods diverged immedi-
ately after shock formation. Also in reference 1, it
was observed in numerical test that the quadratic
form was stable only if the 
ux integral term was
evaluated exactly.

The discontinuous Galerkin has a number of fun-
damental properties essential to any robust shock
capturing method. In a series of papers, Cock-
burn and Shu3 and Cockburn et al.4; 5 discussed
the discontinuous Galerkin method with the use of
approximate Riemann solvers, limiters, and total-
variation-diminishing (TVD) Runge-Kutta time dis-
cretizations for nonlinear hyperbolic problems. Ref-
erence 5 presents the design of a limiter that applies
to general triangulations, maintains a high order of
accuracy in smooth regions, and guarantees maxi-
mum norm stability. Jiang and Shu6 also proved
that the discontinuous Galerkin method satis�es a
local cell entropy inequality for the square entropy
�(U ) = U2, for arbitrary triangulations in any space
dimension, and for any order of accuracy. This proof
trivially implies the L2 stability of the method for
nonlinear shocked problems in the scalar case.

Flux limiting has been demonstrated as a means
for stabilizing the shocked case;5; 7 however, this ap-
proach tends to reduce the formal accuracy and to
diminish the compactness of the method. This work
presents a local eigenvalue analysis that predicts the
stability, or instability, of the method for the Burg-
ers' equation when a shock is present. The analysis is
possible only because of the compact nature of the
discontinuous Galerkin method. The analysis also
provides physical insight into possible causes of the
instability and leads to 
ux formulas that eliminate
the instability.

The �rst section describes the discontinuous
Galerkin method applied to the nonlinear Burgers'
equation and provides the rationale for the analysis.
The second section describes in detail the analysis
and the conclusions drawn from it. The third sec-
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tion presents numerical experiments with the new

ux function using the scalar Burgers' equation. The
last section presents numerical experiments with the
Euler equations.

Discontinuous Galerkin Method

Application of the semidiscrete form of the dis-
continuous Galerkin method to the scalar hyperbolic
equation of the form

@U

@t
+
@F (U )

@x
= 0 (0 < x < 1; t > 0) (1)

begins by partitioning the domain into non-
overlapping elements that cover the domain: 0 =
x0 < : : : < xi < xi+1 < : : : < 1. Within each el-
ement, the solution is approximated by a subspace
that is de�ned local to the element. In the present
work, the subspace will be the set of polynomials
of degree � n: S = f1; �; �2; : : : ; �ng. Within each
element, x = �xi + 4xi �, �xi = (xi�1 + xi)=2,
and 4xi = xi � xi�1. The solution in element i is
approximated by

U (x; t) � Vi(�; t) =

nX
j=0

vi;j(t)�
j

for xi�1 < x < xi.
The evolution of the dependent variables vi;j(t)

is governed by the projection of equation (1) onto
the same subspace that is used to approximate the
solution:Z 1

2

�
1

2

�j
�
@Vi

@t
+

@F (Vi)

@x

�
d� = 0 (0 � j � n)

Integration by parts yields the weak conservation
form of the equation, which is used in the numer-
ical solution:Z 1

2

�
1

2

�j
@Vi

@t
d� +4x�1

i

"
�

Z 1

2

�
1

2

j�j�1F (Vi) d�

+ ( 1
2
)j bF (xi) � (� 1

2
)j bF (xi�1)i = 0 (2)

or

Lj � Vi(�)

+ 4x�1
i

h
( 1
2
)j bF (xi)� (� 1

2
)j bF (xi�1)i = 0 (3)

for j = 0; 1; 2; : : : ; n.
The Lj � Vi(�) term, which contains the two in-

tegral terms of equation (2), depends only on the
solution within the element. In the quadrature-free
form,1 the 
ux is approximated as a polynomial in �,

and the second integral is evaluated exactly. Formal
error convergence properties are obtained in smooth
regions with the 
ux truncated to a polynomial of
degree n + 1. For nonlinear problems with shocks,
stable solutions of the quadratic case (n = 2) were
obtained only when the 
ux was evaluated exactly.
At the element boundaries, where the solution is

not unique, the bF terms are evaluated based on the
solution that is \upwind" (in the sense of charac-

teristic directions) of the element boundary. bF is
generally written in the form of a Riemann 
ux asbF (xi) � FR(UL; UR), where UL and UR denote so-
lutions from the left and right sides of the element
boundary, respectively. Hence, adjacent elements
communicate with one another only through bF . As
a consequence, each element can be thought of as
a somewhat autonomous entity that responds to in-

ow boundary conditions provided by the element(s)
\upwind" of itself.

Elements Near a Shock

Under somewhat idealized conditions, the stabil-
ity of the overall solution depends heavily, if not en-
tirely, on the behavior of the method in the element
that contains the shock. To show this, consider the
model problem in which F (U ) = 1

2
U2 and equation

(1) is supplemented with the following initial and
boundary conditions:

U (0; t) = �U (1; t) = 1

U (x; 0) =

�
1

�1

x < Xs

x > Xs

The approximate Riemann 
ux commonly used with
this model problem is of the form

FR(UL; UR) = [F (UR) + F (UL)� �(UR � UL)]=2

where � � jUR + ULj=2. If � = jUR + ULj=2, then
this 
ux is an exact splitting

FR(UL; UR) =

�
F (UL) if � > 0
F (UR) if � < 0

and also has the following property commonly asso-
ciated with Roe's 
ux :4

� (UR � UL) = � [F (UR) � F (UL)] :

Next, assume that an exact discrete solution exists
and that the solution is su�ciently accurate such
that the sign of � for the discrete solution is the
same as the sign of the exact solution (i.e., sign(U ) =
sign(�)). Also let I denote the index of the element
within which the shock lies (i.e., xI�1 < Xs < xI).
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Then for all element boundaries to the left of element
I, � > 0 and bF (xi) = F (Vi( 12 )). Similarly, for all
element boundaries to the right of element I, � <

0 and bF (xi) = F (Vi+1(� 1

2
)). Hence, equation (3)

becomes

Lj � Vi + 4x�1
i
( 1
2
)jF (Vi( 12 ))

= 4x�1
i
(� 1

2
)jF (Vi�1( 12 )) (i < I) (4)

Lj � Vi = �4x�1
i

�
( 1
2
)jF (Vi+1(� 1

2
))

�(� 1

2
)jF (Vi�1( 12 ))

�
(i = I) (5)

Lj � Vi � 4x�1
i
( 1
2
)jF (Vi(� 1

2
))

= �4x�1
i
(� 1

2
)jF (Vi+1(� 1

2
)) (i > I)

(6)

When considered separately, the subdomains to
the left and to the right of element I, which are
governed by equations (4) and (6), respectively, are
stable and well behaved (and trivially satis�ed by
the initial conditions). Hence, all elements to the
left and to the right of element I can be thought of
as simply supplying boundary conditions to element
I. Thus, the stability of the overall problem is con-
tingent on the existence and stability of the solution
within the element that contains the shock.

Analysis of Shock Containing Element

Motivated by the previous discussion, we consider
the behavior of equation (5), in which the approx-

imate Riemann 
ux terms bF are evaluated at the
state speci�ed by the boundary conditions (the ele-
ment subscript has been dropped for clarity):

Z 1

2

�
1

2

�j
@V

@t
d� �4x�1

Z 1

2

�
1

2

j�j�1F (V ) d�

= �4x�1
�
( 1
2
)jF (�1)� (� 1

2
)jF (1)

�
Linearization of the integral 
ux term about a spec-
i�ed test solution V0 gives

M
@V

@t
�4x�1AV = �4x�1(S+F0 �AV0) (7)

where* M � [mj;k], V � [vj], A = @F

@V
, F � [fj],

S � [sj ],

mj;k =

Z 1

2

�
1

2

�j+k d�; sj =

�
0 for j even
1

2

j for j odd

*Matrix and vector indices range from 0 through n.

and

fj =

Z 1

2

�
1

2

j�j�1F (V (�)) d�

Equation (7) is stable if the eigenvalues ofM�1A

lie in the left-hand plane, with one exception. Note
that the �rst row of A is zero, which produces at
least one zero eigenvalue. However, the equation for
j = 0 is simply the constraint that the time rate of
change of the average value of the solution depends
only on the 
ux imbalance, which in this analysis is
speci�ed. Thus, this particular eigenvalue does not
a�ect the stability of the system. To avoid confusion,
we examine the eigenvalues of a modi�ed matrix Â
in which this zero eigenvalue has been eliminated.
The modi�ed equation is obtained by discarding the
j = 0 equation and eliminating the v0 component
of the solution from the remaining equations by re-
quiring that the average value of V be a speci�ed
constant.
Because equation (7) is nonlinear, the eigenval-

ues cannot be evaluated until the solution is known.
However, the exact solution is not known and may
not even exist. For the purposes of this analysis, the
eigenvalues are evaluated by using a test solution
V0 that is obtained by projecting the initial solution
onto the solution subspace S. This test solution is
given byZ 1

2

�
1

2

�jV0(�) d� =

Z
�s

�
1

2

�jd� �

Z 1

2

�s

�jd� (8)

where �s = (Xs� �x)=4x is the location of the shock
within the element in terms of element coordinates.
The Â and its eigenvalues � are readily computed

for any shock position within the element. Fig-
ures 1(a)-1(e) show the real part of the eigenval-
ues Re(�) as a function of shock position for n =
1 through 5, respectively. In all cases, all eigenval-
ues are zero when the shock is on the boundary. For
n � 2, all eigenvalues have a negative real part for
� 1

2
< �s < 1

2
. For n > 2, the real part of the eigen-

values becomes positive when the shock is close to
the boundary of the element (�s � � 1

2
); and hence,

the method is unstable for these cases. This result
is consistent with the numerical results of reference
1.
When V is a polynomial of degree n, then F (V ) is

a polynomial of degree 2n; however, the 
ux polyno-
mial can be truncated to degree n+1 with no formal
loss of accuracy. In reference 1, it was observed that
the solution obtained with n= 2 was stable when the

ux polynomial was evaluated exactly, and unstable
when the 
ux polynomial was truncated. (Note that
truncation of the 
ux is not an issue in the n = 1
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case because n + 1 = 2n.) The eigenvalues shown
in �gures 1(a)-1(e) were computed using the exact

ux (no truncation). Figure 2 shows the eigenvalues
for n = 2 in which the degree of the 
ux polyno-
mial is truncated to n + 1 = 3. In this case, the
eigenvalues are positive for shock positions near the
boundary. Again, the analysis agrees with the nu-
merical results.
A physical understanding of why the element may

become unstable can be obtained by looking at the
test solution as the shock approaches the element
boundary. Figures 3(a) and 3(b) illustrate typical
solutions for n = 2 and n = 3, respectively. As the
shock approaches the right boundary, the solution
on that boundary becomes positive. As this occurs
the physics within the element dictate the movement
of \mass" into the neighboring element. However,
the approximate Riemann 
uxes that are commonly
used do not allow the 
ux to switch until the average
velocity on the element boundary becomes positive,
and this change cannot take place until an overshoot
has occurred (i.e., V ( 1

2
) > 1).

Alternate Flux Formulas

If the conjecture described above is accurate, then
the instability can perhaps be eliminated by chang-
ing the de�nition of the approximate Riemann 
ux
such that it becomes dependent on the solution
within the shocked element as the shock approaches
the edge. For the purposes of this analysis, let the
approximate Riemann 
ux at an element boundary
be de�ned as the sum of all contributions that leave
the elements on either side of the element boundary:

FR(UL; UR) � max(0; UL)UL=2

+ min(0; UR)UR=2 (9)

The equation for the element that contains a shock
becomesZ 1

2

�
1

2

�j
@V

@t
d� �4x�1

Z 1

2

�
1

2

j�j�1F (V ) d�

+ 4x�1
�
s+( 1

2
)jF (V (1=2))

�s�(� 1

2
)jF (V (�1=2))

�
= �4x�1

�
( 1
2
)jF (�1)� (� 1

2
)jF (1)

�
(10)

where s� = 1 if �V (�1=2) > 0 and s� = 0 oth-
erwise. When s� 6= 0, the j = 0 equation is not
degenerate and the eigenvalues of the full matrix A
must be considered. The eigenvalues of the A or Â
matrices produced by the above set of equations are
shown in �gures 4(a)-4(e). Because the eigenvalues
are unchanged when the shock position is not near
the element boundary, these �gures focus on a small

region near �s = 0.5. The real part of the eigenval-
ues is positive for all shock positions for n < 4. For
n = 5, one eigenvalue becomes positive in a small
region near �s = 0.487 suggesting a possible insta-
bility.

The 
ux given in equation (9) is stable for n < 5
and has most of the properties desired of a con-
servative 
ux: it is continuous, monotone, and
FR(U;U ) = F (U ). However, some concern exists
regarding the property that FR(UL; UR) can ex-
ceed both F (UL) and F (UR) in the region UL > 0,
UR < 0. For example, when UL = �UR = u, then
FR(u;�u) = 2F (u). This can be remedied either by
limiting the 
ux or by taking an average of the con-
tributions from the left and right elements (but only
in regions were UL � UR < 0). Note that a limiter
of the formFR

lim
= min(FR(UL; UR); F (UL); F (UR))

does not a�ect the formal accuracy of the discontin-
uous Galerkin method. The average can be either a
simple algebraic average or a weighted average that
depends on the relative magnitudes of the character-
istic speeds; however, the algebraic averaging results
in a 
ux that is a discontinuous function of UL and
UR.

Both limiting and weighted averaging causes the
contribution of the 
ux to the shocked element to de-
pend on the solutions in both the shocked element
and the neighboring element. Consequently, an anal-
ysis of just the shocked element would be of ques-
tionable value. Such a case would require at least an
analysis of two coupled elements; however, this anal-
ysis is left for future work. In the case with algebraic
averaging, the degree to which the approximate Rie-
mann 
ux contributes to the solution in the shocked
element depends only on the solution within that
element, and the current single-element analysis is
still possible. The equations in the shocked element
are similar to those given in equation (10) but with
s� = 1/2 if �V (�1=2) > 0 and s� = 0 otherwise.
(Note that the right-hand side also is di�erent but
does not enter into the analysis.) The eigenvalues
for n = 2 and 4 are shown in �gures 5(a) and 5(b),
respectively. Both cases are stable have eigenvalues
and are similar to the non-averaged case. Similar
results are found for values of n < 5 while the n =
5 case is still unstable.

Numerical Test

Numerical tests of the discontinuous Galerkin
method with the modi�ed approximate Riemann

ux are presented in �gures 6 and 7. The initial con-
dition used for these tests is U (x; 0) = �U +cos(2�x),
where �U is either 0 or 1/2. With this initial solution,
a shock begins to form shortly after t = 0:15. The
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solution is evolved in time by using a third-order
Runge-Kutta method, as described in reference 1.

Figure 6(a) shows the evolution of the solution up
to t = 0:4 for n = 3 and with the domain parti-
tioned into 20 uniformly spaced elements. Figure
6(b) shows solutions at t = 0:4 for n = 0 through 5.
This grid resolution places the exact shock position
on an element boundary. The solutions are smooth
and stable for all values of n tested. Figure 6(c)
shows a similar case with 22 elements which places
the shock at the center of an element. For n > 1,
the solutions have considerable oscillations that are
not aesthetically pleasing, but the oscillations are
bounded in time and are con�ned to the element that
contains the shock and the elements on either side of
that element. Furthermore, if the element average is
plotted, as in �gure 6(d), then the element-averaged
solution is monotone in every case. Figures 7(a) and
7(b) show the moving shock case that results when
�U = 1=2. Figure 7(a) shows the local solution for t
= 0.4, n = 0 through 5, and �gure 7(b) shows the lo-
cal and element-averaged solution for n = 3. Again,
the oscillations do not increase with n, the oscilla-
tions are con�ned to the neighborhood of the shock,
and the element-averaged solution is quite well be-
haved. Tests that employed some form of averaging
when UL � UR < 0 showed no signi�cant change in
the solutions.

Euler Equations

In this section, the quadrature-free from of discon-
tinuous Galerkin is applied to the Euler equations
given by

U =

2
4 �

�E

�u

3
5 ; F =

2
4 �u

u(�E + P )
�u2 + P

3
5

where P = (
 � 1)(�E � 1

2
�u2).

The �rst requirement for the implementation of
the quadrature-free form of discontinuous Galerkin
is that the 
ux must be written as a polynomial. But
unlike Burgers' equation, an exact polynomial form
for the Euler 
ux does not exist. When rewritten in
terms of the dependent variables �, �E, and �u, the

ux involves the terms

f1 =
(�u)(�E)

�
; f2 =

(�u)2

�
; f3 =

(�u)3

�2

Polynomial approximations of the form

fi =

n+1X
0

�kfi;k

are obtained by projection by solving

Z 1=2

�1=2

�j�fi d� =

Z 1=2

�1=2

�jRi d�

for j = 0; 1; : : : ; n + 1, where Ri = (�u)(�E),
(�u)2, and (�u)f2 for i = 1, 2, and 3, respectively.
The equations are linear in the unknowns fi;k, and
each equation set has the same matrix on the left-
hand side of the equation.
For initial tests, the approximate Riemann 
ux is

obtained by splitting F according to the sign of the
eigenvalues of the Jacobian of F . Thus, if

F = AU = L [�]L�1U

then

F(UL; UR) =
�
L [�+]L�1

�
UL

UL

+
�
L [��]L�1

�
UR

UR

� F+(UL) + F�(UR)

The test problem is periodic on the domain 0 <

x < 1 with initial conditions

� = 1 + 0:1 sin(2�x)

P = �
 ; a =
p

P=�

u = u1 � 2


�1
(a�

p

)

�E = P=(
 � 1) + �u2=2

that produce a single isentropic acoustic wave that
propagates at an average speed of u1 �

p

. The

initial discrete solution is obtained by �tting a poly-
nomial through the exact initial solution at the
Chebyshev-Gauss-Lobatto points within each ele-
ment.
The acoustic wave propagates in the ��-direction

(relative to u1), steepens to form a shock, and then
gradually decays in time. Figures 8(a) and 8(b)
show solutions at t = 3 for right-traveling waves with
u1 = 2:0

p

 and 0:5

p

, respectively. At these val-

ues for u1, each eigenvalue of the Jacobian A is of
a constant sign throughout the domain. Thus, the
functional form of the 
ux is the same everywhere,
and the situation in which �UL > 0 and �UR < 0
does not occur for any eigenvalue. As in the results
with Burgers' equation, the solution is stable, the
oscillations are con�ned to the neighborhood of the
shock, and they remain roughly the same magnitude
as the formal order of the method n is increased.
With u1 = �

p

, the shock is stationary, and

the sign of the eigenvalue associated with the right-
traveling wave changes across the shock. As shown
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in �gure 9, the solutions are considerably more oscil-
latory in this case, and a distinct di�erence is evident
between solutions obtained with odd and even val-
ues of n. In the region on the left side of the shock,
the oscillations do not grow as n is increased, but
they are not con�ned to the shock region as in the
moving-shock case. In the region on the right side of
the shock, results with odd values of n are smooth,
but results with even values of n are highly oscilla-
tory. The reasons for this unusual dependence on
n is not known at this time. Results obtained with
this simple 
ux are stable but lack su�cient accu-
racy, and further work is needed.

The appearance of the solution can be improved
either by adding dissipation or by applying a �lter
to the solution at each time step. E�orts to develop
high-order dissipation terms have not been success-
ful thus far; however, �lters that are both compact
and robust have been developed. The �lter has the
formV = T�1dTV, where T is the constant matrix
that relates the coe�cients of a general polynomial
to the coe�cients of an equivalent Legendre expan-
sion. The diagonal matrix d = (�0; �1; : : : ; �m; : : :)
contains the damping coe�cients. Figure 10 shows
results with �i = �i for several constant values of
�. This �lter is capable of removing oscillations;
however, the accuracy is reduced to �rst order for
smooth 
ows. Development of high-order �lters and
adaptive �lters may be required.

Concluding Remarks

An analysis is presented of the discontinuous
Galerkin method for a scalar nonlinear model prob-
lem that contains a shock. The transition from a
stable to an unstable method as the degree of the
method is increased from 2 to 3 is correctly pre-
dicted by the analysis. Also, the instability asso-
ciated with truncating the 
ux polynomial is also
predicted. Insight gained from the analysis suggests
a possible source for the instability and leads to a
modi�ed approximate Riemann 
ux that eliminates
the instability. The elimination of the instability is
predicted in the analysis of the modi�ed method and
is veri�ed by numerical experiment using Burgers'
equation. Although the solutions are oscillatory in
the neighborhood of the shock, the oscillations are
bounded and are con�ned to the neighborhood of the
shock. Furthermore, the element-averaged solution
is monotone, which suggests that a smooth solution
can be obtained by applying a �lter as a post pro-
cessing step. Numerical experiments with the Eu-
ler equations showed that the modi�ed approximate
Riemann 
ux resulted in a stable scheme. Cases in
which the shock was in motion such that eigenval-

ues did not change sign across the shock produced
results similar to those observed with Burgers' equa-
tion. In other cases, however, the oscillations were
not con�ned to the shock region, and some type of
�ltering is necessary.
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Figure 2. Real part of eigenvalues for n = 2 with
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Figure 3. Test solution when shock is near right
boundary.

-1

0

0.3 0.5

Re(σ)

ξs

-2

0

0.4 0.5
ξs

a) n = 1. b) n = 2.

-4

-2

0

0.45 0.5

Re(σ)

ξs

-2

-1

0

0.45 0.5
ξs

c) n = 3. d) n = 4.

-2

-1

0

1

0.45 0.5

Re(σ)

ξs

e) n = 5.

Figure 4. Real part of eigenvalues of discontinuous
Galerkin method with Riemann 
ux given by equa-
tion (9).
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Figure 5. Real part of eigenvalues with averaging
used in Riemann 
ux.
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a) Evolution of solution
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c) Shock at mid-element:
n = 0{5, t = 0:4.
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averaged solution with
shock at mid-element:
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Figure 6. Numerical solution with modi�ed Rie-
mann 
ux for stationary shock.
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Figure 7. Numerical solution with modi�ed Rie-
mann 
ux for moving shock.
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Figure 8. Solution to Euler equations at t = 3 with
u1 chosen such that 
ux splitting is essentially �xed.
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Figure 10. Solution to Euler equations at t = 3 with
u1 = �

p

 and n = 3 with spectral �lter.
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